Purpose: Our purpose was to quantify stresses in the bone surrounding stemless implants in various configurations.
Methods: A detailed finite element model of the glenohumeral joint was used to simulate abduction kinematics before and after arthroplasty and to measure bone stresses around the implants. Two digital patients were simulated: one healthy and one with supraspinatus muscle impairment (deficiency). Two anatomic total shoulder arthroplasty (TSA) configurations were placed in a 135° cutting plane. Two reverse shoulder arthroplasty (RSA) configurations with cutting angles of 135° and 145° were simulated with asymmetrical and symmetrical polyethylene cups, respectively, to obtain humeral neck-shaft angles of 145°.
Results: Compared with preoperative models, TSA preserved and RSA restored abduction kinematics. The bone mechanical stresses were located mainly around the central stud of the TSA and were more peripheral to the RSA humeral components. The RSA configuration with the 145° cutting angle and symmetrical cup generated the lowest maximal bone stress and bone volume involvement. Stresses in the scapular cortical bone were highest in the supraspinatus fossa for TSA and the crest of the acromion for RSA.
Conclusion: Early stability and glenohumeral bone stress change with implant configuration and should not be extrapolated from anatomic clinical data to reverse configurations.
Level of evidence: Diagnostic tests or criteria; Level IV.
Keywords: bone stress; finite element analysis; polyethylene cup shape; reverse shoulder arthroplasty; shoulder; stemless; total shoulder arthroplasty.
© 2024 The Author(s). Journal of Experimental Orthopaedics published by John Wiley & Sons Ltd on behalf of European Society of Sports Traumatology, Knee Surgery and Arthroscopy.