Extraction and classification of structured data from unstructured hepatobiliary pathology reports using large language models: a feasibility study compared with rules-based natural language processing

J Clin Pathol. 2024 Sep 20:jcp-2024-209669. doi: 10.1136/jcp-2024-209669. Online ahead of print.

Abstract

Aims: Structured reporting in pathology is not universally adopted and extracting elements essential to research often requires expensive and time-intensive manual curation. The accuracy and feasibility of using large language models (LLMs) to extract essential pathology elements, for cancer research is examined here.

Methods: Retrospective study of patients who underwent pathology sampling for suspected hepatocellular carcinoma and underwent Ytrrium-90 embolisation. Five pathology report elements of interest were included for evaluation. LLMs (Generative Pre-trained Transformer (GPT) 3.5 turbo and GPT-4) were used to extract elements of interest. For comparison, a rules-based, regular expressions (REGEX) approach was devised for extraction. Accuracy for each approach was calculated.

Results: 88 pathology reports were identified. LLMs and REGEX were both able to extract research elements with high accuracy (average 84.1%-94.8%).

Conclusions: LLMs have significant potential to simplify the extraction of research elements from pathology reporting, and therefore, accelerate the pace of cancer research.

Keywords: Artificial Intelligence; LIVER; Liver Neoplasms.