Over the past few years, the ability to efficiently increase boron nitride nanotube (BNNT) production has opened up ample research possibilities. BNNT has garnered significant attention for diversifying its industrial applications. However, the problem of poor processability resulting from agglomeration and uneven distribution has emerged as a major challenge to integrating BNNT into the polymer matrix for composite material formation. Utilizing noncovalently attached molecules with various reactive sites can be a logical method to enhance the compatibility of BNNT with different polymers. The present study explored a simple approach to protruding BNNT onto the surface of Al2O3 through tannic acid (TA)-assisted generation of alkyl chains (octadecylamine, ODA) to fabricate Al2O3@ODA-BNNT. The subsequent compounding of Al2O3@ODA-BNNT with epoxy polymer generates interconnected thermal conduction pathways, thereby improving the thermal conduction and mechanical performance of the composites. The current research approach allows for the even distribution of BNNT throughout the polymer matrix, as demonstrated by optical characterization, mechanical performance analysis, and isotropic thermal conductivity analysis. The fabricated epoxy composite by incorporating a 2 wt % (BNNT = 1.3 wt % and ODA = 0.7 wt %) ODA-BNNT exhibited 5.117 W/mK thermal conductivity and 7.43 MPa mechanical stress. Thermal conductivity improved by 2528, 76.56, and 54.7%, while mechanical stress enhanced by 270, 221, and 34% compared to neat polymers without BNNT and virgin BNNT epoxy composites, respectively.
© 2024 The Authors. Published by American Chemical Society.