Comparative Evaluation of the Effect of Microwave, 1% Sodium Hypochlorite, and Sodium Perborate Disinfection on the Color Stability of Two Nanoparticle-Reinforced Heat-Polymerized PMMA Denture Base Resins: An In Vitro Study

Cureus. 2024 Aug 20;16(8):e67350. doi: 10.7759/cureus.67350. eCollection 2024 Aug.

Abstract

Introduction Older adults experience significant improvement in their quality of life by using removable prosthetics to replace missing teeth. Poly(methyl methacrylate) (PMMA) has become the most popular material for denture bases due to its ease of use and affordability. Recently, scientists have started adding nanoparticles like titanium dioxide (TiO2) and zirconium oxide (ZrO2) to PMMA to enhance its physical properties. These resins with nanoparticles need to stay the same color after being disinfected in different ways if they are going to be used for a long time. So, the purpose of this investigation was to assess whether or not there exists any difference between two kinds of thermally cured acrylic resin for artificial tooth bases strengthened with nanoparticles when subjected to various chemical sterilizers alongside microwave irradiation, as well as determine their comparative colorfastness levels. Materials and methods In this lab experiment, we tested how well 5% TiO2 and 7% ZrO2 nanoparticle-reinforced PMMA resins held their color when exposed to microwave irradiation, 1% sodium hypochlorite, or sodium perborate disinfection. We made 120 specimens shaped like discs; half were treated using one method, while the other half were treated using a different method. Color was measured at baseline (T0), after one cycle (T1), after five cycles (T2), and after six months (T3) using a reflectance spectrophotometer, which calculates the color difference (∆E). Results All three methods of disinfection caused significant color changes (p<0.001); however, sodium perborate caused the least amount of change, followed by 1% sodium hypochlorite and microwave irradiation. The mean ∆E values showed that after one day, there was a change in color by 1.1 due to microwave disinfection, which increased to 5.7 after five days; on the other hand, for 1% sodium hypochlorite, the change was recorded as 0.7 after one month and 1.6 after three months and finally reached up to 2.6 after six months, while sodium perborate showed the least amount of change, with ∆E values recorded as 0.2 after one month, 0.5 after three months, and 0.8 after six months. Conclusion Sodium perborate proved to be the most effective disinfectant for maintaining color stability in 5% TiO2 and 7% ZrO2 nanoparticle-reinforced PMMA resins, thus making it ideal for routine disinfection. Therefore, according to this study, sodium perborate should be used as a disinfection method because it results in minimal color change in nanoparticle-reinforced PMMA dentures.

Keywords: color stability; disinfection methods; microwave irradiation; nanoparticle reinforcement; pmma; sodium hypochlorite; sodium perborate; spectrophotometer; titanium dioxide; zirconium oxide.