Patients with Primary immunodeficiency (PIDs) may be infected by Polioviruses (PVs), especially when vaccinated with live Oral Polio Vaccine before diagnosis. They may establish long-term shedding of divergent strains and may act as reservoirs of PV transmission. This study delved into the effect of the genetic evolution of complete PV genomes, from MHC class II-deficient patients, on the excretion duration and clinical outcomes. Stool samples from three PID patients underwent analysis for PV detection through inoculation on cell culture and real-time PCR, followed by VP1 partial sequencing and full genome sequencing using the Illumina technology. Our findings revealed a low number of mutations for one patient who cleared the virus, while two exhibited a high intra-host diversity favoring the establishment of severe outcomes. Neurovirulence-reverse mutations were detected in two patients, possibly leading to paralysis development. Furthermore, a recombination event, between type 3 Vaccine-Derived Poliovirus and Sabin-like1 (VDPV3/SL1), occurred in one patient. Our findings have suggested an association between intra-host diversity, recombination, prolonged excretion of the virus, and emergence of highly pathogenic strains. Further studies on intra-host diversity are crucial for a better understanding of the virus evolution as well as for the success of the Global Polio Eradication Initiative.
Keywords: intra‐host diversity; neurovirulent‐reverse mutations; recombination; vaccine‐derived poliovirus.
© 2024 The Author(s). Journal of Medical Virology published by Wiley Periodicals LLC.