Recent breakthroughs in medical AI have proven the effectiveness of deep learning in fetal echocardiography. However, the limited processing power of edge devices hinders real-time clinical application. We aim to pioneer the future of intelligent echocardiography equipment by enabling real-time recognition and tracking in fetal echocardiography, ultimately assisting medical professionals in their practice. Our study presents the YOLOv5s_emn (Extremely Mini Network) Series, a collection of resource-efficient algorithms for fetal echocardiography detection. Built on the YOLOv5s architecture, these models, through backbone substitution, pruning, and inference optimization, while maintaining high accuracy, the models achieve a significant reduction in size and number of parameters, amounting to only 5%-19% of YOLOv5s. Tested on the NVIDIA Jetson Nano, the YOLOv5s_emn Series demonstrated superior inference speed, being 52.8-125.0 milliseconds per frame(ms/f) faster than YOLOv5s, showcasing their potential for efficient real-time detection in embedded systems.
Copyright: © 2024 Zhu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.