Delineating the NOX-Mediated Promising Therapeutic Strategies for the Management of Various Cardiovascular Disorders: A Comprehensive Review

Curr Vasc Pharmacol. 2024 Sep 20. doi: 10.2174/0115701611308870240910115023. Online ahead of print.

Abstract

Cardiovascular disorders (CVDs) are reported to occur with very high rates of incidence and exhibit high morbidity and mortality rates across the globe. Therefore, research is focused on searching for novel therapeutic targets involving multiple pathophysiological mechanisms. Oxidative stress plays a critical role in the development and progression of various CVDs, such as hypertension, pulmonary hypertension, heart failure, arrhythmia, atherosclerosis, ischemia-reperfusion injury, and myocardial infarction. Among multiple pathways generating reactive oxygen species (ROS), NADPH defines all abbreviations oxidases of the NOX family as the major source of ROS generation and plays an intricate role in the development and progression of CVDs. Therefore, exploring the role of different NADPH oxidase isoforms in various cardiovascular pathologies has attracted attention to current cardiovascular research. Focusing on NADPH oxidases to reduce oxidative stress in managing diverse CVDs may offer unique therapeutic approaches to prevent and treat various heart conditions. The current review article highlights the role of different NADPH oxidase isoforms in the pathophysiology of various CVDs. Moreover, the focus is also to emphasize different experimental studies that utilized various NADPH oxidase isoform modulators to manage other disorders. The present review article considers new avenues for researchers/scientists working in the field of cardiovascular pharmacology utilizing NADPH oxidase isoform modulators.

Keywords: Cardiovascular disorders; NADPH oxidase; Oxidative stress; Reactive nitrogen species.; Reactive oxygen species.