Synthesis of a natural core substrate with lignin-xylan cross-linkage for unveiling the productive kinetic parameters of glucuronoyl esterase

Biochem Biophys Res Commun. 2024 Nov 19:734:150642. doi: 10.1016/j.bbrc.2024.150642. Epub 2024 Sep 2.

Abstract

Lignin-carbohydrate complexes (LCCs) present a considerable hurdle to the economic utilization of lignocellulosic biomass. Glucuronoyl esterase (GE) is an LCC-degrading enzyme that catalyzes the cleavage of the cross-linkages between lignin and xylan in LCCs. Benzyl-d-glucuronate (Bn-GlcA), a commercially available substrate, is widely used to evaluate GE activity assays. However, since Bn-GlcA lacks the structural backbone of naturally occurring LCCs, the mechanisms underlying the activity of GEs and their diversity in the structure-activity relationship are not fully understood. Herein, we provided a synthesis scheme for designing 1,23-α-d-(6-benzyl-4-O-methyl-glucuronyl)-1,4-β-d-xylotriose (Bn-MeGlcA3Xyl3) as a natural core substrate bearing cross-linkage between lignin and glucuronoxylan. A well-defined and yet more realistic synthetic substrate was successfully synthesized via a key step of the benzyl esterification of 4-O-methyl-glucuronyl-1,4-β-d-xylotriose (MeGlcA3Xyl3), a minimized fragment of glucuronoxylan enzymatically digested by β-1,4-xylanase. To the best of our knowledge, this is the first report of the productive GE kinetic analysis using this substrate. Kinetic parameters of the GE from the fungal Pestalotiopsis sp. AN-7 (PesGE), i.e., the Km, Vmax, and kcat of Bn-MeGlcA3Xyl3, were 0.43 mM, 55.5 μmol min-1·mg-1, and 35.8 s-1, respectively. On the other hand, as reported to date, the productive kinetic parameters for Bn-GlcA were not obtained because of its excessively high Km value (>16 mM). The substantial variance in the enzymatic activity of PesGE regarding substrate-binding affinity between Bn-MeGlcA3Xyl3 and Bn-GlcA was also demonstrated using in silico docking simulation. These results suggested that the extended xylan fragment is a key structural determinant affecting PesGE's substrate recognition. Furthermore, the presence of a natural xylan backbone allows for evaluating the enzyme activity of xylan-degrading enzymes. Accordingly, the synthesized substrate with the natural core structure of LCC allowed us to unveil the productive kinetic parameters of GEs, serving as a versatile substrate for further elucidating the cascade reaction of GE and xylan-degrading enzymes.

Keywords: Biomass refinery; Delignification; Glucuronic acid; Glucuronoxylan; Hemicellulose; Lignin-carbohydrate complex.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Esterases* / chemistry
  • Esterases* / metabolism
  • Kinetics
  • Lignin* / chemistry
  • Lignin* / metabolism
  • Molecular Docking Simulation
  • Substrate Specificity
  • Xylans* / chemistry
  • Xylans* / metabolism

Substances

  • Esterases
  • Lignin
  • Xylans