Structure and Dynamics of the CCCH-Type Tandem Zinc Finger Domain of POS-1 and Implications for RNA Binding Specificity

Biochemistry. 2024 Oct 15;63(20):2632-2647. doi: 10.1021/acs.biochem.4c00259. Epub 2024 Sep 25.

Abstract

CCCH-type tandem zinc finger (TZF) motifs are found in many RNA-binding proteins involved in regulating mRNA stability, translation, and splicing. In Caenorhabditis elegans, several RNA-binding proteins that regulate embryonic development and cell fate determination contain CCCH TZF domains, including POS-1. Previous biochemical studies have shown that despite high levels of sequence conservation, POS-1 recognizes a broader set of RNA sequences compared to the human homologue tristetraprolin. However, the molecular basis of these differences remains unknown. In this study, we refined the consensus RNA sequence and determined the differing binding specificities of the two zinc fingers of POS-1. We also determined the solution structure and characterized the internal dynamics of the TZF domain of POS-1. From the structure, we identified unique features that define the RNA binding specificity of POS-1. We also observed that the TZF domain of POS-1 is in equilibrium between interconverting conformations. Transitions between these conformations require internal motions involving many residues with correlated dynamics in each ZF. We propose that the correlated dynamics are necessary to allow allosteric communication between the nucleotide-binding pockets observed in the N-terminal ZF. Our study shows that both the structure and conformational plasticity of POS-1 are important in ensuring recognition of its RNA binding targets.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Binding Sites
  • Caenorhabditis elegans Proteins* / chemistry
  • Caenorhabditis elegans Proteins* / genetics
  • Caenorhabditis elegans Proteins* / metabolism
  • Caenorhabditis elegans* / genetics
  • Caenorhabditis elegans* / metabolism
  • Humans
  • Models, Molecular
  • Protein Binding
  • Protein Conformation
  • Protein Domains
  • RNA / chemistry
  • RNA / metabolism
  • RNA-Binding Proteins* / chemistry
  • RNA-Binding Proteins* / genetics
  • RNA-Binding Proteins* / metabolism
  • Zinc Fingers*

Substances

  • Caenorhabditis elegans Proteins
  • RNA-Binding Proteins
  • RNA