Diabetes is a chronic disease that affects millions of humans worldwide. This review article provides an analysis of the recent advancements in non-invasive blood glucose monitoring, detailing methods and techniques, with a special focus on Electromagnetic wave microwave glucose sensors. While optical, thermal, and electromagnetic techniques have been discussed, the primary emphasis is focussed on microwave frequency sensors due to their distinct advantages. Microwave sensors exhibit rapid response times, require minimal user intervention, and hold potential for continuous monitoring, renders them extremely potential for real-world applications. Additionally, their reduced susceptibility to physiological interferences further enhances their appeal. This review critically assesses the performance of microwave glucose sensors by considering factors such as accuracy, sensitivity, specificity, and user comfort. Moreover, it sheds light on the challenges and upcoming directions in the growth of microwave sensors, including the need for reduction and integration with wearable platforms. By concentrating on microwave sensors within the broader context of non-invasive glucose monitoring, this article aims to offer significant enlightenment that may drive further innovation in diabetes care.
Keywords: Electromagnetics; Glucose; Microwave; Non-invasive; Sensor.
© 2024 The Authors.