Uncontrolled hemorrhage remains a critical threat in trauma and surgery. This study developed a novel hemostatic composite by encapsulating Peganum harmala L. seed extract (PH) with known hemostatic properties into lipid nanocapsules (PH-LNCs) and then embedding them within a polyvinyl alcohol-chitosan-polyethylene glycol-glycerol (PVA-CS-PEG-G) matrix. The composite was physically crosslinked via the dual processes of freezing-thawing and thermal crosslinking and exhibited robust mechanical properties reaching 0.434 ± 0.014 MPa and elasticity of 40.685 % ± 4.04. It also demonstrated excellent biocompatibility, surface morphology, physical stability, and ex-vivo skin deposition/permeation were assessed. The characterization of PH-LNCs revealed optimal PH-LNC formation and successful integration into the composite with particle size, zeta potential, and PDI were approximately 45.45 ± 24 nm, -16.3 ± 1.4 mV, and 0.374 ± 0.1, respectively. In vitro studies highlighted enhanced blood clotting and platelet adhesion, while in vivo experiments confirmed superior hemostatic efficacy in a mouse tail amputation model. The composite's soft texture, conformability, and mechanical strength make it a promising candidate for effective traumatic wound management.
Keywords: Elastic; Hydrogels; Lipid nanocapsules; Nanocomposite; Peganum harmala; Sealant agent.
Copyright © 2024 Elsevier B.V. All rights reserved.