Ultrasensitive Terahertz Label-Free Metasensors Enabled by Quasi-Bound States in the Continuum

Research (Wash D C). 2024 Sep 26:7:0483. doi: 10.34133/research.0483. eCollection 2024.

Abstract

Advanced sensing devices based on metasurfaces have emerged as a revolutionary platform for innovative label-free biosensors, holding promise for early diagnostics and the detection of low-concentration analytes. Here, we developed a chip-based ultrasensitive terahertz (THz) metasensor, leveraging a quasi-bound state in the continuum (q-BIC) to address the challenges associated with intricate operations in trace biochemical detection. The metasensor design features an open-ring resonator metasurface, which supports magnetic dipole q-BIC combining functionalized gold nanoparticles (AuNPs) bound with a specific antibody. The substantial enhancement in THz-analyte interactions, facilitated by the potent near-field enhancement enabled by the q-BICs, results in a substantial boost in biosensor sensitivity by up to 560 GHz/refractive index units. This methodology allows for the detection of conjugated antibody-AuNPs for cardiac troponin I at concentrations as low as 0.5 pg/ml. These discoveries deliver valuable insight for AuNP-based trace biomolecule sensing and pave the path for the development of chip-scale biosensors with profound light-matter interactions.