The interfacial local field is of critical importance in data analysis to deduce intrinsic surface responses from optical measurements of interfaces of condensed media but has not yet been well interrogated. We present here a simple approach to find local fields approximately at various interfaces of isotropic or nearly isotropic media. We divide a medium into atomic planes or molecular layers. It is found that the dipolar field contribution to the local field in a plane or layer from induced dipoles residing in planes beyond the nearest neighbor planes or layers is negligible; in many cases, the contribution is dominated by in-plane dipoles and the local field has a simple expression very much like that for an isotropic bulk. This finding allows us to calculate approximate local field variation at various interfaces. With the interfacial local field known, intrinsic surface response coefficients can be extracted from the optically measured surface responses.
© 2024 Author(s). Published under an exclusive license by AIP Publishing.