OS-SSVEP: One-shot SSVEP classification

Neural Netw. 2024 Dec:180:106734. doi: 10.1016/j.neunet.2024.106734. Epub 2024 Sep 25.

Abstract

It is extremely challenging to classify steady-state visual evoked potentials (SSVEPs) in scenarios characterized by a huge scarcity of calibration data where only one calibration trial is available for each stimulus target. To address this challenge, we introduce a novel approach named OS-SSVEP, which combines a dual domain cross-subject fusion network (CSDuDoFN) with the task-related and task-discriminant component analysis (TRCA and TDCA) based on data augmentation. The CSDuDoFN framework is designed to comprehensively transfer information from source subjects, while TRCA and TDCA are employed to exploit the information from the single available calibration trial of the target subject. Specifically, CSDuDoFN uses multi-reference least-squares transformation (MLST) to map data from both the source subjects and the target subject into the domain of sine-cosine templates, thereby reducing cross-subject domain gap and benefiting transfer learning. In addition, CSDuDoFN is fed with both transformed and original data, with an adequate fusion of their features occurring at different network layers. To capitalize on the calibration trial of the target subject, OS-SSVEP utilizes source aliasing matrix estimation (SAME)-based data augmentation to incorporate into the training process of the ensemble TRCA (eTRCA) and TDCA models. Ultimately, the outputs of CSDuDoFN, eTRCA, and TDCA are combined for the SSVEP classification. The effectiveness of our proposed approach is comprehensively evaluated on three publicly available SSVEP datasets, achieving the best performance on two datasets and competitive performance on the third. Further, it is worth noting that our method follows a different technical route from the current state-of-the-art (SOTA) method and the two are complementary. The performance is significantly improved when our method is combined with the SOTA method. This study underscores the potential to integrate the SSVEP-based brain-computer interface (BCI) into daily life. The corresponding source code is accessible at https://github.com/Sungden/One-shot-SSVEP-classification.

Keywords: Brain-computer interface (BCI); Data augmentation; One-shot classification; Steady-state visual evoked potential (SSVEP); Transfer learning.

MeSH terms

  • Adult
  • Algorithms
  • Brain-Computer Interfaces
  • Calibration
  • Discriminant Analysis
  • Electroencephalography* / methods
  • Evoked Potentials, Visual* / physiology
  • Humans
  • Least-Squares Analysis
  • Male
  • Neural Networks, Computer
  • Photic Stimulation / methods