Contemporary nutraceutical and biomedical sectors are witnessing fast progress in efficient product development due to the advancements in nanoscience and encapsulation technology. Nutraceuticals are generally defined as food substances, or a section thereof, that provide us with health benefits such as disease prevention and therapy. Nutraceutical and biomedical compounds as well as food supplements are a natural approach for attaining therapeutic outcomes with negligible or ideally no adverse effects. Nonetheless, these materials are susceptible to deterioration due to exposure to heat, oxygen, moisture, light, and unfavorable pH values. Tocosomes, or bilayered lyotropic vesicles, are an ideal encapsulation protocol for the food and nutraceutical industries. Biocompatibility, high entrapment capacity, storage stability, improved bioavailability, site specific delivery, and sustained-release characteristics are among the advantages of this nanocarrier. Similar to liposomal carriers and nanoliposomes, tocosomes are able to encapsulate hydrophilic and hydrophobic compounds separately or simultaneously, offering synergistic bioactive delivery. This manuscript describes different aspects of tocosome in parallel to liposome and nanoliposome technologies pertaining to nutraceutical and nanonutraceutical applications. Different properties of these nanocarriers, such as their physicochemical characteristics, preparation approaches, targeting mechanisms, and their applications in the biomedical and nutraceutical industries, are also covered.
Keywords: biomedicine; drug delivery; encapsulation; liposome; nanoliposome; nanonutraceutical; tocosome.