Genome-Wide Identification and Expression Analysis of MYB Transcription Factor Family in Response to Various Abiotic Stresses in Coconut (Cocos nucifera L.)

Int J Mol Sci. 2024 Sep 18;25(18):10048. doi: 10.3390/ijms251810048.

Abstract

Abiotic stresses such as nitrogen deficiency, drought, and salinity significantly impact coconut production, yet the molecular mechanisms underlying coconut's response to these stresses are poorly understood. MYB proteins, a large and diverse family of transcription factors (TF), play crucial roles in plant responses to various abiotic stresses, but their genome-wide characterization and functional roles in coconut have not been comprehensively explored. This study identified 214 CnMYB genes (39 1R-MYB, 171 R2R3-MYB, 2 3R-MYB, and 2 4R-MYB) in the coconut genome. Phylogenetic analysis revealed that these genes are unevenly distributed across the 16 chromosomes, with conserved consensus sequences, motifs, and gene structures within the same subgroups. Synteny analysis indicated that segmental duplication primarily drove CnMYB evolution in coconut, with low nonsynonymous/synonymous ratios suggesting strong purifying selection. The gene ontology (GO) annotation of protein sequences provided insights into the biological functions of the CnMYB gene family. CnMYB47/70/83/119/186 and CnMYB2/45/85/158/195 were identified as homologous genes linked to nitrogen deficiency, drought, and salinity stress through BLAST, highlighting the key role of CnMYB genes in abiotic stress tolerance. Quantitative analysis of PCR showed 10 CnMYB genes in leaves and petioles and found that the expression of CnMYB45/47/70/83/85/119/186 was higher in 3-month-old than one-year-old coconut, whereas CnMYB2/158/195 was higher in one-year-old coconut. Moreover, the expression of CnMYB70, CnMYB2, and CnMYB2/158 was high under nitrogen deficiency, drought, and salinity stress, respectively. The predicted secondary and tertiary structures of three key CnMYB proteins involved in abiotic stress revealed distinct inter-proteomic features. The predicted interaction between CnMYB2/158 and Hsp70 supports its role in coconut's drought and salinity stress responses. These results expand our understanding of the relationships between the evolution and function of MYB genes, and provide valuable insights into the MYB gene family's role in abiotic stress in coconut.

Keywords: MYB transcription factor; drought stress; gene expression; nitrogen deficiency stress; salinity stress.

MeSH terms

  • Cocos* / genetics
  • Droughts
  • Gene Expression Profiling
  • Gene Expression Regulation, Plant*
  • Genome, Plant
  • Genome-Wide Association Study
  • Multigene Family*
  • Phylogeny*
  • Plant Proteins* / genetics
  • Plant Proteins* / metabolism
  • Salinity
  • Stress, Physiological* / genetics
  • Transcription Factors* / genetics
  • Transcription Factors* / metabolism

Substances

  • Plant Proteins
  • Transcription Factors