Anomaly Detection Method for Industrial Control System Operation Data Based on Time-Frequency Fusion Feature Attention Encoding

Sensors (Basel). 2024 Sep 23;24(18):6131. doi: 10.3390/s24186131.

Abstract

Anomaly detection in industrial control system (ICS) data is one of the key technologies for ensuring the security monitoring of ICSs. ICS data are characterized as complex, multi-dimensional, and long-sequence time-series data that embody ICS business logic. Due to its complex and varying periodic characteristics, as well as the presence of long-distance and misaligned temporal associations among features, current anomaly detection methods in ICS are insufficient for feature extraction. This paper proposes an anomaly detection method named TFANet, based on time-frequency fusion feature attention encoding. Considering that periodic variations are more concentrated in the frequency domain, this method first transforms the time-domain data into the frequency domain, obtaining both amplitude and phase data. Then, these data, together with the original time-series data, are used to extract features from two perspectives: long-term temporal changes and long-distance associations. Finally, the six features learned from both the time and frequency domains are fused, and the feature weights are calculated using an attention mechanism to complete the anomaly classification. In multi-classification tasks on three ICS datasets, the proposed method outperforms three popular time-series models-iTransformer, Crossformer, and TimesNet-across five metrics: accuracy, precision, recall, F1 score, and AUC-ROC, with average improvements of approximately 19%, 37%, 31%, 35%, and 22%, respectively.

Keywords: anomaly detection; attention mechanism; feature fusion; industrial control security; sensor operation data.

Grants and funding

This research received no external funding.