Predictors of cardiac disease in duchenne muscular dystrophy: a systematic review and evidence grading

Orphanet J Rare Dis. 2024 Sep 28;19(1):359. doi: 10.1186/s13023-024-03372-x.

Abstract

Background: Duchenne muscular dystrophy (DMD) is a rare disease that causes progressive muscle degeneration resulting in life-threatening cardiac complications. The objective of this systematic literature review was to describe and grade the published evidence of predictors of cardiac disease in DMD.

Methods: The review encompassed searches of Embase, MEDLINE ALL, and the Cochrane Database of Systematic Reviews from January 1, 2000, to December 31, 2022, for predictors of cardiac disease in DMD. The certainty of evidence (i.e., very low to high) was assessed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) framework.

Results: We included 33 publications encompassing 9,232 patients with DMD. We found moderate- to high-quality evidence that cardiac medication (i.e., ACE inhibitors [enalapril and perindopril], β-blockers [carvedilol], and mineralocorticoid receptor antagonists [eplerenone]) are significantly associated with preserved left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), and left ventricular circumferential strain (LVCS). DMD mutations in exons 51 and 52 were found to be significantly associated with lower risk of cardiomyopathy; deletions treatable by exon 53 skipping and mutations in the Dp116 coding region with improved LVEF and prolonged cardiac dysfunction-free survival; and exons 45-50 and 52 with early left ventricular systolic dysfunction (low/very low-quality evidence). We found high-quality evidence that glucocorticoids (deflazacort) are significantly associated with preserved LVEF and improved fractional shortening (FS), and low-quality evidence that glucocorticoids (deflazacort, prednisone, and/or prednisolone) are associated with improved ejection fraction (EF) and lower risk of cardiomyopathy, ventricular dysfunction, and heart failure-related mortality. Full-time mechanical ventilation was found to be significantly correlated with LVEF (low-quality evidence), muscle strength with FS (low-quality evidence), and genetic modifiers (i.e., LTBP4 rs10880 and ACTN3) with LVEF, lower risk of cardiomyopathy and left ventricular dilation (low-quality evidence).

Conclusion: Several sources of cardiac disease heterogeneity are well-studied in patients with DMD. Yet, the certainty of evidence is generally low, and little is known of the contribution of non-pharmacological interventions, as well as the impact of different criteria for initiation of specific treatments. Our findings help raise awareness of prevailing unmet needs, shape expectations of treatment outcomes, and inform the design of future research.

Keywords: Cardiomyopathy; GRADE; Guidelines; Heart; Neuromuscular disease; Treatment.

Publication types

  • Systematic Review

MeSH terms

  • Heart Diseases / epidemiology
  • Heart Diseases / etiology
  • Humans
  • Muscular Dystrophy, Duchenne* / complications
  • Muscular Dystrophy, Duchenne* / drug therapy
  • Muscular Dystrophy, Duchenne* / genetics