A glucose tolerance test (GTT) is routinely used to assess glucose homeostasis in clinical settings and in preclinical research studies using rodent models. The procedure assesses the ability of the body to clear glucose from the blood in a defined time after a bolus dose. In the human clinical setting, glucose is ingested via voluntary consumption of a glucose-sweetened drink. Typically, in the rodent GTT oral gavage (gavage-oGTT) or (more commonly) intraperitoneal injection (IPGTT) are used to administer the glucose bolus. Although used less frequently, likely due to investigator technical and experience barriers, the former is the more physiologically relevant as it integrates the gastrointestinal tract (GI), including release of key incretin hormones. However, orally gavaging glucose in the GTT is also not without its limitations: gavaging glucose straight into the stomach bypasses potentially critical early glucose-sensing via the mouth (cephalic phase) and associated physiological responses. Furthermore, gavaging is stressful on mice, and this by itself can increase blood glucose levels. We have developed and validated a refined protocol for mouse oral GTT which uses a voluntary oral glucose dosing method, micropipette-guided drug administration (MDA), without the need for water deprivation. This approach is simple and non-invasive. It is less stressful for the mice, as evidenced by lower circulating corticosterone levels 10 minutes after glucose-dosing compared to oral gavage. This is significant for animal and investigator welfare, and importantly minimising the confounding effect of stress on mouse glucose homeostasis. Using a randomised cross-over design, we have validated the MDA approach in the oGTT against oral gavage in male and female C57BL/6J and C57BL/6N mice. We show the ability of this method to detect changes in glucose tolerance in diet-induced obese animals. Compared to oral gavage there was lower inter-animal variation in the MDA-oGTT. In addition to being more representative of the human procedure, the MDA-oGTT is easy and has lower barriers to adoption than the gavage oGTT as it is non-invasive and requires no specialist equipment or operator training. The MDA-oGTT a more clinically representative, accessible, and refined replacement for the gavage-oGTT for mouse metabolic phenotyping, which is simple yet overcomes significant deficiencies in the current standard experimental approaches.