Various design platforms are available to stabilize soluble HIV-1 envelope (Env) trimers, which can be used as antigenic baits and vaccine antigens. However, stabilizing HIV-1 clade C trimers can be challenging. Here, we stabilized an HIV-1 clade C trimer based on an Env isolated from a pediatric elite-neutralizer (AIIMS_329) using multiple platforms, including SOSIP.v8.2, ferritin nanoparticles (NP) and an I53-50 two-component NP, followed by characterization of their biophysical, antigenic, and immunogenic properties. The stabilized 329 Envs showed binding affinity to trimer-specific HIV-1 broadly neutralizing antibodies (bnAbs), with negligible binding to non-neutralizing antibodies (non-nAbs). Negative-stain electron microscopy (nsEM) confirmed the native-like conformation of the Envs. Multimerization of 329 SOSIP.v8.2 on ferritin and two-component I53-50 NPs improved the overall affinity to HIV-1 bnAbs and immunogenicity in rabbits. These stabilized HIV-1 clade C 329 Envs demonstrate the potential to be used as antigenic baits and as components of multivalent vaccine candidates in future.
Keywords: HIV-1C; SOSIP Env trimer; broadly neutralizing antibodies; ferritin nanoparticle; nsEM; pediatric elite-neutralizer; rabbit immunization; two-component nanoparticle.