Deep learning models based on convolutional neural networks (CNNs) have been used to classify Alzheimer's disease or infer dementia severity from 3D T1-weighted brain MRI scans. Here, we examine the value of adding occlusion sensitivity analysis (OSA) and gradient-weighted class activation mapping (Grad-CAM) to these models to make the results more interpretable. Much research in this area focuses on specific datasets such as the Alzheimer's Disease Neuroimaging Initiative (ADNI) or National Alzheimer's Coordinating Center (NACC), which assess people of North American, predominantly European ancestry, so we examine how well models trained on these data generalize to a new population dataset from India (NIMHANS cohort). We also evaluate the benefit of using a combined dataset to train the CNN models. Our experiments show feature localization consistent with knowledge of AD from other methods. OSA and Grad-CAM resolve features at different scales to help interpret diagnostic inferences made by CNNs.
Keywords: Alzheimer’s Disease; Deep Learning; Grad-CAM; Magnetic Resonance Imaging; Occlusion Sensitivity Analysis.