Nicotinamide mononucleotide enhances fracture healing by promoting skeletal stem cell proliferation

Theranostics. 2024 Sep 16;14(15):5999-6015. doi: 10.7150/thno.98149. eCollection 2024.

Abstract

The process of skeletal regeneration initiated by stem cells following injury, especially in fractures, is significantly impaired by aging and adverse factors. Nicotinamide mononucleotide (NMN), a critical endogenous precursor of nicotinamide adenine dinucleotide (NAD), has garnered extensive attention for its multifaceted regulatory functions in living organisms and its wide-ranging therapeutic potential. However, whether NMN contributes to trauma-induced skeletal regeneration remains unclear. Methods: The transverse femoral shaft fracture model was employed to evaluate the potential advantages of NMN administration for overall repair during the initial fracture stages in male mice through micro-CT analysis, histochemistry, and biomechanical testing. The pro-proliferative function of NMN on skeletal stem cells (SSCs) was investigated through flow cytometry, qRT-PCR, NAD content measurement, and cell proliferation assay. Results: In this study, we observed that the administration of NMN during the initial phase of fracture in mice led to a larger callus and corresponding improvement in micro-CT parameters. NMN enhances the cartilaginous component of the callus by elevating the NAD content, consequently accelerating subsequent endochondral ossification and the fracture healing process. Subsequent analyses elucidated that NMN was beneficial in promoting the expansion of diverse stem cells in vivo and in vitro potentially via modulation of the Notch signaling pathway. Moreover, the depletion of macrophages profoundly obstructs the proliferation of SSCs. Conclusion: Our discoveries provide a potential strategy for enhancing fracture healing through stimulation of callus SSC proliferation at an early stage, shedding light on the translational value of NMN as an enhancer for skeletal regeneration and highlighting the pivotal role of macrophage-stem cell interactions in governing the regenerative influence of NMN on stem cells.

Keywords: NAD; callus formation; fracture healing; skeletal stem cells.

MeSH terms

  • Animals
  • Bone Regeneration / drug effects
  • Bony Callus / drug effects
  • Cell Proliferation* / drug effects
  • Disease Models, Animal
  • Femoral Fractures / drug therapy
  • Femoral Fractures / pathology
  • Fracture Healing* / drug effects
  • Male
  • Mice
  • Mice, Inbred C57BL
  • NAD / metabolism
  • Nicotinamide Mononucleotide* / pharmacology
  • Osteogenesis / drug effects
  • Signal Transduction / drug effects
  • Stem Cells / drug effects
  • Stem Cells / metabolism
  • X-Ray Microtomography

Substances

  • Nicotinamide Mononucleotide
  • NAD