Maps of Membrane Pore Dynamics From Picosecond to Millisecond Pulse Durations

IEEE Trans Biomed Eng. 2024 Sep 30:PP. doi: 10.1109/TBME.2024.3471413. Online ahead of print.

Abstract

Electroporation occurs when cells are exposed to an electric pulse of sufficient intensity E0 and pulse duration τ. Many studies have attempted to develop universal scaling laws to predict membrane pore dynamics for pulsed electric fields (PEFs) of different durations; however, the differences in pore dynamics across these parameters makes this difficult both experimentally and numerically. This study uses the asymptotic Smoluchowski equation (ASME) to quantify the number of pores, average pore radius, and fractional pore area (FPA) during exposure to PEFs with durations from hundreds of picoseconds to a millisecond. We highlight pulse parameter regimes that favor increases in pore radius and number and show that the FPA is dominated by the number of pores formed on the cell membrane. Furthermore, the number of pores and the FPA depend almost entirely on E0 for τ exceeding the charging time of the cell and both E0 and τ for τ shorter than the charging time. Finally, the maps of pore number, average radius, and FPA demonstrate that a universal scaling law for pore dynamics across a wide range of pulse durations does not exist, although certain scaling behaviors may be valuable over narrow regimes. Practically, these maps provide a guideline for selecting PEF parameters to achieve desired membrane permeabilization.