Fluralaner is a novel insecticide targeting the ionotropic GABA receptor (GABAR) subunit, RDL. A recent study revealed that N316L, a substitution of asparagine (N) with leucine (L), in the second transmembrane (M2)-spanning region reduced the antagonist action of fluralaner on the housefly Musca domestica RDL (MdRDL) in vitro. To verify the impact of N316L in vivo, the corresponding mutation (N318L) in the fruitfly Drosophila melanogaster RDL (DmRDL) was constructed using CRISPR/Cas9 genome editing. The homozygous DmRDLN318L mutant showed a 9.87-fold resistance to fluralaner compared with w1118 while still being highly sensitive to broflanilide and fipronil, which is consistent with those findings observed in the electrophysiology assays of the homomeric DmRDLWT or DmRDLN318L channel. Moreover, DmRDLN318L led to malformed ovaries, stunted eggs, and sterility in homozygous females. These results highlighted N318 as a molecular site for fluralaner in vivo and in vitro and might elucidate the resistance mechanisms of insects against fluralaner.
Keywords: CRISPR/Cas9; Drosophila; chloride channel; isoxazolines; resistance to dieldrin.