A human DCC variant causing mirror movement disorder reveals that the WAVE regulatory complex mediates axon guidance by netrin-1-DCC

Sci Signal. 2024 Oct;17(856):eadk2345. doi: 10.1126/scisignal.adk2345. Epub 2024 Oct 1.

Abstract

The axon guidance cue netrin-1 signals through its receptor DCC (deleted in colorectal cancer) to attract commissural axons to the midline. Variants in DCC are frequently associated with congenital mirror movements (CMMs). A CMM-associated variant in the cytoplasmic tail of DCC is located in a conserved motif predicted to bind to a regulator of actin dynamics called the WAVE (Wiskott-Aldrich syndrome protein-family verprolin homologous protein) regulatory complex (WRC). Here, we explored how this variant affects DCC function and may contribute to CMM. We found that a conserved WRC-interacting receptor sequence (WIRS) motif in the cytoplasmic tail of DCC mediated the interaction between DCC and the WRC. This interaction was required for netrin-1-mediated axon guidance in cultured rodent commissural neurons. Furthermore, the WIRS motif of Fra, the Drosophila DCC ortholog, was required for attractive signaling in vivo at the Drosophila midline. The CMM-associated R1343H variant of DCC, which altered the WIRS motif, prevented the DCC-WRC interaction and impaired axon guidance in cultured commissural neurons and in Drosophila. The findings reveal the WRC as a pivotal component of netrin-1-DCC signaling and uncover a molecular mechanism explaining how a human genetic variant in the cytoplasmic tail of DCC may lead to CMM.

MeSH terms

  • Animals
  • Axon Guidance* / genetics
  • Axons / metabolism
  • Axons / physiology
  • DCC Receptor* / genetics
  • DCC Receptor* / metabolism
  • Drosophila Proteins* / genetics
  • Drosophila Proteins* / metabolism
  • Drosophila melanogaster / genetics
  • Drosophila melanogaster / metabolism
  • HEK293 Cells
  • Humans
  • Mice
  • Netrin Receptors
  • Netrin-1* / genetics
  • Netrin-1* / metabolism
  • Neurons / metabolism
  • Rats
  • Receptors, Cell Surface / genetics
  • Receptors, Cell Surface / metabolism
  • Signal Transduction
  • Tumor Suppressor Proteins / genetics
  • Tumor Suppressor Proteins / metabolism

Substances

  • Netrin-1
  • DCC Receptor
  • DCC protein, human
  • NTN1 protein, human
  • Drosophila Proteins
  • fra protein, Drosophila
  • Tumor Suppressor Proteins
  • Receptors, Cell Surface
  • Netrin Receptors