Infrared birefringent crystals that hold significant importance for optoelectronic application have been rarely reported. Traditional tetrahedral PS4, ethane-like P2S6, and octahedral InS6 units in thiophosphates typically manifest near isotropy, often resulting in extremely small birefringence. However, this study prepares α-Rb2InP2S7 (1), β-Rb2InP2S7 (2), and Cs2InP2S7 (3), consisting of the aforementioned microstructures, notably exhibiting the highest refractive index difference or birefringence values (0.247, 0.298, and 0.250 at 546 nm, respectively) among thiophosphates, the middle one being larger than that of commercial birefringent materials. This unusual increase in birefringence can be primarily attributed to two key factors: (1) simultaneous stretching and compressing of the P-S and In-S covalent bond interactions, generating high polarizability anisotropy of InS6, PS4, and P2S6 polyhedral units; (2) the additional incorporation of alkali metals that further reduces the dimensionality of the crystal structure, creating one-dimensional [InP2S7]2- structures with increasing polarizability anisotropy. This study presents an alternative approach to enhance birefringent materials by reconstructing covalent bond interactions and specific spatial arrangements.
This journal is © The Royal Society of Chemistry.