Bringing molecules together on a catalytic surface is a prerequisite for bimolecular and recombination reactions. However, in the absence of attractive interactions between reactants, such as hydrogen bonds, this poses a challenge. In contrast, based on density functional theory, we show that coadsorption at active sites of single-atom alloys (SAAs) is favored and that coadsorption is a general phenomenon observed for catalytically relevant adsorbates on a broad range of SAAs under temperature and pressure conditions commonly employed for catalysis. Dopants located in both terrace sites and in step edge defects exhibit a preference for coadsorption, displaying similar periodic trends. Using kinetic Monte Carlo simulations, we compare the reactivity of a model reaction on both a pure metal and an SAA and show that the preference for coadsorption significantly alters the overall reaction energy profile, even when the barriers for the rate-determining elementary step are identical. In our models, the coadsorption preference enhances the catalytic activity of the SAA surface by several orders of magnitude compared to the pure metal. We also report infrared (IR) spectroscopic signatures of coadsorption, which facilitate experimental detection. Analysis reveals that in these systems repulsive lateral interactions between nearby molecules are more than compensated for by the enhanced binding at dopant sites. Among the broad range of systems considered, SAAs containing early transition metals (TMs) exhibit the strongest coadsorption preference, which can be rationalized by assuming the existence of an optimal number of electrons involved in binding. The strong coadsorption preference, together with facile product desorption from early TMs, renders these systems attractive candidates for catalysis. Moreover, these SAAs could open new routes for reduction reactions because coadsorption with hydrogen is favored.