We provide an in silico study of stochastic viral infection extinction from a pharmacokinetical viewpoint. Our work considers a non-specific antiviral drug that increases the virus clearance rate, and we investigate the effect of this drug on early infection extinction. Infection extinction data are generated by a hybrid multiscale framework that applies both continuous and discrete mathematical approaches. The central result of our paper is the observation, analysis and explanation of a linear relationship between the virus clearance rate and the probability of early infection extinction. The derivation behind this simple relationship is given by merging different mathematical toolboxes.
Keywords: SARS-CoV-2; agent-based models; branching processes; multiscale mathematical modelling; spatially explicit model; stochastic extinction.
© 2024 The Author(s).