Type III CRISPR immune systems bind viral or plasmid RNA transcripts and activate Csm3/Cmr4 and Cas10 nucleases to uniquely cleave both invader RNA and DNA, respectively. Additionally, type III effector complexes generate cyclic oligoadenylate (cOA) signaling molecules to activate trans-acting, auxiliary Csm6/Csx1 ribonucleases, previously proposed to be non-specific in their in vivo RNA cleavage preference. Despite extensive in vitro studies, the nuclease requirements of type III systems in their native contexts remain poorly understood. Here we systematically investigated the in vivo roles for immunity of each of the three Streptococcus thermophilus (Sth) type III-A Cas nucleases and cOA signaling by challenging nuclease defective mutant strains with plasmid and phage infections. Our results reveal that RNA cleavage by Csm6 is both sufficient and essential for maintaining wild-type levels of immunity. Importantly, Csm6 RNase activity leads to immunity against even high levels of phage challenge without causing host cell dormancy or death. Transcriptomic analyses during phage infection indicated Csm6-mediated and crRNA-directed preferential cleavage of phage transcripts. Our findings highlight the critical role of Csm6 RNase activity in type III immunity and demonstrate specificity for invader RNA transcripts by Csm6 to ensure host cell survival upon phage infection.
© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.