Highly Efficient Manganese Bromides with Reversible Luminescence Switching through Amorphous-Crystalline Transition

ACS Appl Mater Interfaces. 2024 Oct 3;16(41):55842-55851. doi: 10.1021/acsami.4c09396. Online ahead of print.

Abstract

While luminescent stimuli-responsive materials (LSRMs) have become one of the most sought-after materials owing to their potential in optoelectronic applications, the use of earth-scarce lanthanides remains a crucial problem to be solved for further development. In this work, two manganese-based LSRMs, (R)-(+)-1-phenylethylammonium manganese bromide, (R-PEA)2MnBr4, and (S)-(-)-1-phenylethylammonium manganese bromide, (S-PEA)2MnBr4, are successfully demonstrated. Both (R-PEA)2MnBr4 and (S-PEA)2MnBr4 show a kinetically stable red-emissive amorphous state and a thermodynamically stable green-emissive crystalline state at room temperature, where the fully reversible transition can be done through melt-quenching and annealing processes. Based on this property, a reusable manganese-halide-based time-temperature indicator is demonstrated for the first time. Furthermore, an X-ray scintillator with a low limit of detection (18.1 nGy/s) and a high spatial resolution limit (30.0 lp/mm) are achieved by exploiting the high transparency of amorphous states. These results uncover the multifunctionality of manganese halides and pave the way for upcoming research.

Keywords: X-ray scintillator; manganese(II) bromides; reversible luminescence switching; stimuli-responsive materials; time−temperature indicator.