Chromosome-level genome assembly of American sweetgum (Liquidambar styraciflua, Altingiaceae)

Sci Data. 2024 Oct 3;11(1):1078. doi: 10.1038/s41597-024-03924-7.

Abstract

The deciduous American sweetgum (Liquidambar styraciflua, Altingiaceae) is a popular ornamental and economically valuable tree renowned for its sweet-smelling bark resin, abundant volatile substances, and spectacular fall leaf color. However, the absence of a reference genome hinders thorough investigations into the mechanisms underlying phenotypic variation, secondary metabolite synthesis and adaptation, both in this species and other Liquidambar members. In this study, we sequenced and constructed a chromosome-level assembly of the L. styraciflua genome, covering 662.48 Mb with a scaffold N50 of 39.54 Mb, by integrating PacBio, Illumina and chromosome conformation capture data. We identified 58.83% of the genome sequences as repetitive elements and 25,713 protein-coding genes, 97.28% of which were functionally annotated. The genome sequencing reads, assembly and annotation data have been deposited in publicly available repositories. This high-quality genome assembly provides valuable resources for further evolutionary and functional genomic studies in American sweetgum and other Liquidambar species.

Publication types

  • Dataset

MeSH terms

  • Chromosomes, Plant* / genetics
  • Genome, Plant*
  • Liquidambar* / genetics
  • Molecular Sequence Annotation