Formation of Paraldehyde (C6H12O3) in Interstellar Analog Ices of Acetaldehyde Exposed to Ionizing Radiation

Chemphyschem. 2024 Nov 18;25(22):e202400837. doi: 10.1002/cphc.202400837. Epub 2024 Nov 8.

Abstract

Acetaldehyde (CH3CHO) plays a crucial role in the synthesis of prebiotic molecules such as amino acids, sugars, and sugar-related compounds, and in the progress of chain reaction polymerization in deep space. Here, we report the first formation of the cyclic acetaldehyde trimer - paraldehyde (C6H12O3) - in low-temperature interstellar analog ices exposed to energetic irradiation as proxies of galactic cosmic rays (GCRs). Utilizing vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry and isotopic substitution experiments, paraldehyde was identified in the gas phase during the temperature-programmed desorption of the irradiated acetaldehyde ices based on the calculated adiabatic ionization energies and isomer-specific dissociative fragmentation patterns upon photoionization. As acetaldehyde is ubiquitous throughout the interstellar medium and has been tentatively identified in interstellar ices, paraldehyde could have formed in acetaldehyde-containing ices in a cold molecular cloud and is an excellent candidate for gas-phase observation in star-forming regions via radio telescopes. The identification of paraldehyde in the gas phase from the processed acetaldehyde ices advances our understanding of how complex organic molecules can be synthesized through polymerization reactions in extraterrestrial ices exposed to GCRs.

Keywords: Complex organic molecules; IR spectroscopy; Interstellar synthesis; Mass spectrometry; Paraldehyde.