A new perspective on tumor progression: Evolution via selection for function

Evol Med Public Health. 2024 Sep 19;12(1):172-177. doi: 10.1093/emph/eoae021. eCollection 2024.

Abstract

Tumorigenesis is commonly attributed to Darwinian processes involving natural selection among cells and groups of cells. However, progressing tumors are those that also achieve an appropriate group phenotypic composition (GPC). Yet, the selective processes acting on tumor GPCs are distinct from that associated with classical Darwinian evolution (i.e. natural selection based on differential reproductive success) as tumors are not genuine evolutionary individuals and do not exhibit heritable variation in fitness. This complex evolutionary scenario is analogous to the recently proposed concept of 'selection for function' invoked for the evolution of both living and non-living systems. Therefore, we argue that it is inaccurate to assert that Darwinian processes alone account for all the aspects characterizing tumorigenesis and cancer progression; rather, by producing the genetic and phenotypic diversity required for creating novel GPCs, these processes fuel the evolutionary success of tumors that is dependent on selection for function at the tumor level.

Keywords: evolution; function; group phenotypic composition; perspective; progression; selection; tumors.