Habitat quality outweighs the human footprint in driving spatial patterns of Cetartiodactyla in the Kunlun-Pamir Plateau

J Environ Manage. 2024 Oct 5:370:122693. doi: 10.1016/j.jenvman.2024.122693. Online ahead of print.

Abstract

The Human Footprint (HFP) and Habitat Quality (HQ) are critical factors influencing the species' distribution, yet their relation to biodiversity, particularly in mountainous regions, still remains inadequately understood. This study aims to identify the primary factor that affects the biodiversity by comparing the impact of the HFP and HQ on the species' richness of Cetartiodactyla in the Kunlun-Pamir Plateau and four protected areas: The Pamir Plateau Wetland Nature Reserve, Taxkorgan Wildlife Nature Reserve, Middle Kunlun Nature Reserve and Arjinshan Nature Reserve through multi-source satellite remote sensing product data. By integrating satellite data with the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST)HQ model and utilizing residual and linear regression analysis, we found that: (1) The Wildness Area (WA) predominantly underwent a transition to a Highly Modified Area (HMA) and Intact Area (IA), with a notable 12.02% rise in stable regions, while 58.51% rather experienced a negligible decrease. (2) From 1985 to 2020, the Kunlun-Pamir Plateau has seen increases in the forestland, water, cropland and shrubland, alongside declines in bare land and grassland, denoting considerable land cover changes. (3) The HQ degradation was significant, with 79.81% of the area showing degradation compared to a 10.65% improvement, varying across the nature reserves. (4) The species richness of Cetartiodactyla was better explained by HQ than by HFP on the Kunlun-Pamir Plateau (52.99% vs. 47.01%), as well as in the Arjinshan Nature Reserve (81.57%) and Middle Kunlun Nature Reserve (56.41%). In contrast, HFP was more explanatory in the Pamir Plateau Wetland Nature Reserve (88.89%) and the Taxkorgan Wildlife Nature Reserve (54.55%). Prioritizing the restoration of degraded habitats areas of the Kunlun Pamir Plateau could enhance Cetartiodactyla species richness. These findings provide valuable insights for the biodiversity management and conservation strategies in the mountainous regions.

Keywords: Cetartiodactyla; Habitat quality; Human footprint; Land cover; Nature reserves.