Snf7-3 is a crucial component of the endosomal sorting complexes required for transport (ESCRT) pathway, playing a vital role in endolysosomal functions. To elucidate the role of Snf7-3 in vivo, we developed conventional-like and conditional Snf7-3 knockout (KO) mouse models using a "Knockout-first" strategy. Conventional-like Snf7-3 KO mice showed significantly reduced Snf7-3 mRNA expression, and older mice (25-40 weeks) exhibited impaired social recognition and increased miniature excitatory postsynaptic currents (mEPSCs). Similarly, conditional KO mice aged 8-24 weeks, with Snf7-3 specifically deleted in forebrain excitatory neurons, displayed impaired object location memory and elevated mEPSC frequency. Consistently, Snf7-3 knockdown in cultured mouse hippocampal neurons led to increased densities of pre- and postsynaptic puncta, supporting the observed increase in mEPSC frequency. In addition, enhanced dendritic complexity was observed in the medial prefrontal cortex of these mice, indicating early synaptic disturbances. Our findings underscore the critical role of Snf7-3 in maintaining normal cognitive functions and social behaviors. The observed synaptic and behavioral deficits in both conventional-like and conditional KO mice highlight the importance of Snf7-3 in specific neuronal populations, suggesting that early synaptic changes could precede more pronounced cognitive impairments.
Keywords: Cognitive functions; Dendrite; ESCRT; Endosome; Snf7-3; Synapse.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.