Assessing the Interaction between Dodecylphosphocholine and Dodecylmaltoside Mixed Micelles as Drug Carriers with Lipid Membrane: A Coarse-Grained Molecular Dynamics Simulation

ACS Omega. 2024 Sep 16;9(39):40433-40445. doi: 10.1021/acsomega.4c02551. eCollection 2024 Oct 1.

Abstract

Integrating drugs into cellular membranes efficiently is a significant challenge in drug delivery systems. This study aimed to overcome these barriers by utilizing mixed micelles to enhance drug incorporation into cell membranes. We employed coarse-grained molecular dynamics (MD) simulations to investigate the stability and efficacy of micelles composed of dodecylphosphocholine (DPC), a zwitterionic surfactant, and dodecylmaltoside (DDM), a nonionic surfactant, at various mixing ratios. Additionally, we examined the incorporation of a mutated form of Indolicidin (IND) (CP10A), an anti-HIV peptide, into these micelles. This study provides valuable insights for the development of more effective drug delivery systems by optimizing the mixing ratios of DPC and DDM. By balancing stability and penetration efficiency, these mixed micelles can improve the delivery of drugs that face challenges crossing lipid membranes. Such advancements can enhance the efficacy of treatments for various conditions, including viral infections and cancer, by ensuring that therapeutic agents reach their intended cellular targets more effectively.