Artificial Intelligence-Enhanced Electrocardiography Identifies Patients With Normal Ejection Fraction at Risk of Worse Outcomes

JACC Adv. 2024 Aug 28;3(9):101179. doi: 10.1016/j.jacadv.2024.101179. eCollection 2024 Sep.

Abstract

Background: An artificial intelligence (AI)-based electrocardiogram (ECG) model identifies patients with a higher likelihood of low ejection fraction (EF). Patients with an abnormal AI-ECG score but normal EF (false positives; FP) more often developed future low EF.

Objective: The purpose of this study was to evaluate echocardiographic characteristics and all-cause mortality risk in FP patients.

Methods: Patients with transthoracic echocardiography and ECG were classified retrospectively into FP, true negatives (TN) (EF ≥50%, normal AI-ECG), true positives (TP) (EF <50%, abnormal AI-ECG), or false negatives (FN) (EF <50%, normal AI-ECG). Echocardiographic abnormalities included systolic and diastolic left ventricular function, valve disease, estimated pulmonary pressures, and right heart parameters. Cox regression was used to assess factors associated with all-cause mortality.

Results: Of 100,586 patients (median age 63 years; 45.5% females), 79% were TN, 7% FP, 5% FN, and 8% TP. FPs had more echocardiographic abnormalities than TN but less than FN or TP patients. An echocardiographic abnormality was present in 97% of FPs. Over median 2.7 years, FPs had increased mortality risk (age and sex-adjusted HR: 1.64 [95% CI: 1.55-1.73]) vs TN. Age and sex-adjusted mortality was higher in FP with abnormal echocardiography than FP with normal echocardiography and to TN regardless of echocardiography result; FP with normal echocardiography had comparable mortality risk to TN with abnormal echocardiography.

Conclusions: FP patients were more likely than TNs to have echocardiographic abnormalities with 97% of exams showing an abnormality. FP patients had higher mortality rates, especially when their echocardiograms also had an abnormality; the concomitant use of AI ECG and echocardiography helps in stratifying risk in patients with normal LVEF.

Keywords: artificial intelligence; echocardiography; electrocardiography; machine learning; ventricular function.