Bladder radiotherapy is challenging due to daily anatomical variations and unpredictable bladder filling, particularly affecting tumors in the cranial part. Conventional radiotherapy requires large planning target volume margins to manage these uncertainties, but this can expose healthy tissue to high radiation doses, increasing the risk of acute and late toxicity. Our aim was to study the potential to limit high-dose exposure to healthy tissue by comparing daily online adaptive radiotherapy (oART) with conventional, non-adaptive radiotherapy (non-ART). The comparison was performed on a bladder cancer patient treated with a simultaneous integrated boost while having a challenging tumor location in the cranial part of the bladder. Liquid fiducial markers aided during the localization of the tumor bed to deliver this focal boost. The dose distribution of oART fractions performed in the clinic was compared with simulated non-ART fractions on the post-treatment cone-beam computed tomography (CBCT). The results showed that while maintaining target coverage of the bladder and gross tumor volume in 100% of the fractions for both workflows, the high dose exposure to organs-at-risk was lower for oART. The small bowel received statistically significantly (p ≤ 0.05) less dose with oART compared to non-ART, with a median volume difference of 20 cm3 receiving 95% of the prescribed dose (55 Gy). The total volume of tissue outside the target receiving 95% of the prescribed dose was also smaller for oART compared to non-ART (p ≤ 0.05). The follow-up of two years showed that the patient had no long-term toxicity effects. Therefore, CBCT-guided oART has been shown to offer a conformal treatment for a challenging patient and can provide a clear advantage in the treatment of bladder cancer.
Keywords: adaptive radiotherapy; bladder cancer; cbct; cbct-guided; fiducial markers; focal boost; image-guided; online adaptive; radiotherapy.
Copyright © 2024, Azzarouali et al.