Dang-Gui-Bu-Xue decoction against diabetic nephropathy via modulating the carbonyl compounds metabolic profile and AGEs/RAGE pathway

Phytomedicine. 2024 Dec:135:156104. doi: 10.1016/j.phymed.2024.156104. Epub 2024 Sep 29.

Abstract

Background: Dang-Gui-Bu-Xue decoction (DBD) is a traditional Chinese medicine prescription clinically employed for diabetic nephropathy (DN). However, the components and pharmacological mechanisms of DBD against DN remain incompletely understood.

Purpose: To clarify the beneficial effect of DBD on DN and to explore its nephroprotective effect's probable mechanism and the main components.

Methods: A diabetic mice model was established by feeding a high-fat diet (HFD) and intraperitoneal injections of streptozotocin (STZ, 40 mg‧kg-1). Subsequently, the mice were maintained on a HFD and administered with DBD. The benefits of DBD against DN were comprehensively assessed by monitoring energy and water intake, blood glucose and lipids, renal functions and pathological status. The UPLC-MS/MS was measured to detect chemical constituents in DBD and absorbed components in DBD-treated plasma under physiological and pathological states. Network pharmacology was employed to forecast the probable pathways of DBD intervention in DN, with subsequent validation of these predictions through testing biochemical parameters, anti-glycation and ELISA assays, immunofluorescence, immunohistochemistry, and western blotting. Then, a chemical derivatization method paired with UPLC-MS/MS analysis was performed to detect the carbonyl compounds in renal tissue. Finally, the main components of DBD against DN were screened by anti-glycation and MTT assays.

Results: DBD regulated energy and water intakes, glucose and lipid metabolism disorders, renal dysfunction, glomerular filtration rate, renal interstitial glycogen accumulation and fibrosis in HFD/STZ-induced DN mice. A total of 129 distinct chemical constituents in DBD were characterized, of which 28 were detected in the DBD-treated plasma under a pathological state. The network pharmacological results suggested AGEs/RAGE and its downstream pathway may be a potential pathway for DBD intervention in DN. Further experiments confirmed that DBD reduced renal oxidative stress by modulating the AGEs/RAGE pathway. Moreover, 21 differential carbonyl compounds were detected between normal and DN mice, and DBD significantly modulated 16. Ultimately, seven components were screened out in DBD, which may be the main components of DBD regulating carbonyl compounds metabolic profile and AGEs/RAGE pathway.

Conclusion: Our findings suggested for the first time that DBD could regulate the carbonyl compounds metabolic profile and AGEs/RAGE signaling pathway to ameliorate DN.

Keywords: AGEs/RAGE pathway; Carbonyl compounds; Dang-Gui-Bu-Xue decoction; Diabetic nephropathy.

MeSH terms

  • Animals
  • Blood Glucose / drug effects
  • Diabetes Mellitus, Experimental* / drug therapy
  • Diabetic Nephropathies* / drug therapy
  • Diet, High-Fat* / adverse effects
  • Drugs, Chinese Herbal* / chemistry
  • Drugs, Chinese Herbal* / pharmacology
  • Glycation End Products, Advanced* / metabolism
  • Kidney / drug effects
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Network Pharmacology
  • Receptor for Advanced Glycation End Products / metabolism
  • Streptozocin
  • Tandem Mass Spectrometry

Substances

  • Drugs, Chinese Herbal
  • Glycation End Products, Advanced
  • danggui buxue decoction
  • Receptor for Advanced Glycation End Products
  • Streptozocin
  • Blood Glucose