Peripheral nerve injury alters the transduction of nociceptive signaling. The coordination of neurons, glia, and immune cells results in persistent pain and inflammation. T cell death-associated gene 8 (TDAG8), located at nociceptors and immune cells, is involved in inflammatory pain and arthritis-induced pain. Here, we employed TDAG8-deficient mice, pharmacological approaches, and calcium/sodium imaging to elucidate how TDAG8-mediated signaling modulates neuron activities in a mouse model of chronic constriction injury-induced neuropathic pain. We demonstrated that TDAG8 participated alone in mechanical allodynia induced by constriction injury. (1) TDAG8-Nav1.8 signaling in small-diameter isolectin B4-positive [IB4(+)] neurons initiates mechanical allodynia; it also modulated substance P release from IB4(-) neurons to facilitate the development of early mechanical allodynia. (2) TDAG8-mediated signaling increased medium-to large-diameter IB4(-) neuron activity to maintain late mechanical allodynia; it also modulated substance P release in soma to reduce satellite glial number and Nav1.7 expression, thus attenuating chronic mechanical allodynia.
Keywords: Molecular biology; Neuroscience.
© 2024 The Author(s).