Co-free Li-rich layered oxides (CFLLOs) with anionic redox activity are among the most promising cathode materials for high-energy-density and low-cost lithium-ion batteries (LIBs). However, irreversible oxygen release often causes severe structural deterioration, electrolyte decomposition, and the formation of unstable cathode-electrolyte interface (CEI) film with high impedance. Additionally, the elimination of cobalt elements further deteriorates the reaction kinetics, leading to reduced capacity and poor rate performance. Here, a multifunctional strategy is proposed, incorporating Li2MnO3 phase content regulation, micro-nano structure design, and heteroatom substitution. The increased content of Li2MnO3 phase enhances the capacity through oxygen redox. The smaller nanoscale primary particles induce greater tensile strain and introduce more grain boundaries, thereby improving the reaction kinetics and reactivity, while the larger micron-sized secondary particles help to reduce interfacial side reactions. Furthermore, Na⁺ doping modulates the local coordination environment of oxygen, stabilizing both the anion framework and the crystal structure. As a result, the designed cathode exhibits enhanced rate performance, delivering a capacity of 158 mAh g⁻¹ at 5.0 C and improved cyclic stability, with a high capacity retention of 99% after 400 cycles at 1.0 C. This multifunctional strategy holds great promise for advancing the practical application of CFLLOs in next-generation LIBs.
Keywords: Li2MnO3 phase regulation; Na doping; co‐free Li‐rich layered oxide; cycling stability; reaction kinetics.
© 2024 Wiley‐VCH GmbH.