Monofluorinated Phosphate with Unique P-F Bond for Nonflammable and Long-Life Lithium-Ion Batteries

Angew Chem Int Ed Engl. 2024 Dec 20;63(52):e202412108. doi: 10.1002/anie.202412108. Epub 2024 Nov 9.

Abstract

Lithium-ion batteries (LIBs) with conventional carbonate-based electrolytes suffer from safety concerns in large-scale applications. Phosphates feature high flame retardancy but are incompatible with graphite anode due to their inability to form a passivated solid electrolyte interphase (SEI). Herein, we report a monofluorinated co-solvent, diethyl fluoridophosphate (DEFP), featuring a unique P-F bond that allows a trade-off between safety and electrochemical performance in LIBs. The P-F bond in DEFP weakens ion-dipole interactions with Li+ ions, lowering the desolvation barrier, and simultaneously reduces the lowest unoccupied molecular orbital (LUMO) of DEFP, promoting the formation of a robust and inorganic-rich SEI. Additionally, DEFP exhibits improved thermal stability due to both robust SEI and the inherent flame-retardant properties of the P-F bond. Consequently, the optimized DEFP-based electrolyte exhibits improved cyclability and rate capacity in LiNi0.8Co0.1Mn0.1O2||graphite full cells compared with triethyl phosphate-based electrolytes and commercial carbonate electrolytes. Even at a low E/C ratio of 3.45 g Ah-1, the 1.16 Ah NCM811||Gr pouch cells achieve a high capacity retention of 94.2 % after 200 cycles. This work provides a promising approach to decouple phosphate safety and graphite compatibility, paving the way for safer and high-performance lithium-ion batteries.

Keywords: Ion-dipole interaction; Lithium-ion battery; Phosphate-based electrolyte; Safety; solid electrolyte interphase.