Elevated levels of HER2 receptor in breast cancer can be targeted through receptor-specific peptides for precise detection and therapy by nuclear medicine approach. Previously reported retro analogue of A9 peptide had shown HER2-specificity with promising pharmacokinetic features. Hence, with an aim of further improving the circulation time of rL-A9 radiopeptide, long polyethylene glycol chain (PEG12) was introduced at the N-terminus of the peptide during solid phase synthesis and influence of PEGylation on biological profile was studied. [177Lu]Lu-DOTA-PEG12-rL-A9 demonstrated high specific cellular uptake (5.94 ± 0.09 %) in HER2-expressing human breast carcinoma SKBR3 cells and low nanomolar binding affinity (Kd = 34.58 ± 12.78 nM). Uptake in SKBR3 tumors induced in female SCID mice was higher at all the time points investigated (3, 24, 48 h) in comparison to the non-PEGylated radiopeptide, [177Lu]Lu-DOTA-rL-A9. Blocking studies led to 51 % reduction in accumulation of radioactivity in the tumor indicating specificity of the radiopeptide. Improved tumor-to-stomach and tumor-to-intestine ratios for [177Lu]Lu-DOTA-PEG12-rL-A9 compared to [177Lu]Lu-DOTA-rL-A9 at 48 h shall pave the way for better contrast and delineation of metastatic sites.
Keywords: HER2; PEG(12); SKBR3; [(177)Lu]LuCl(3); rL-A9.
Copyright © 2024 Elsevier Inc. All rights reserved.