Association Between Scalp Microbiota Imbalance, Disease Severity, and Systemic Inflammatory Markers in Alopecia Areata

Dermatol Ther (Heidelb). 2024 Nov;14(11):2971-2986. doi: 10.1007/s13555-024-01281-2. Epub 2024 Oct 10.

Abstract

Introduction: Alopecia areata (AA) is an autoimmune disease causing non-scarring hair loss, with both genetic and environmental factors implicated. Recent research highlights a possible role for scalp microbiota in influencing both local and systemic inflammatory responses, potentially impacting AA progression. This study examines the link among scalp microbiota imbalances, AA severity, and systemic inflammation.

Methods: We conducted a cross-sectional study with 24 participants, including patients with AA of varying severities and healthy controls. Scalp microbial communities were analyzed using swab samples and ion torrent sequencing of the 16S rRNA gene across multiple hypervariable regions. We explored correlations among bacterial abundance, microbiome metabolic pathways, and circulating inflammatory markers.

Results: Our findings reveal significant dysbiosis in the scalp microbiota of patients with AA compared to healthy controls. Severe AA cases had an increased presence of pro-inflammatory microbial taxa like Proteobacteria, whereas milder cases had higher levels of anti-inflammatory Actinobacteria. Notable species differences included abundant gram-negative bacteria such as Alistipes inops and Bacteroides pleibeius in severe AA, contrasted with Blautia faecis and Pyramydobacter piscolens predominantly in controls. Significantly, microbial imbalance correlated with AA severity (SALT scores) and systemic inflammatory markers, with elevated pro-inflammatory cytokines linked to more severe disease.

Conclusion: These results suggest that scalp microbiota may play a role in AA-related inflammation, although it is unclear whether the shifts are a cause or consequence of hair loss. Further research is needed to clarify the causal relationship and mechanisms involved.

Keywords: Alopecia areata; Dysbiosis; Immune-mediated inflammatory skin diseases; Microbial composition; Skin microbiome.