Carbapenem-Resistant Enterobacter hormaechei Uses Mucus Metabolism to Facilitate Gastrointestinal Colonization

bioRxiv [Preprint]. 2024 Sep 25:2024.09.25.615021. doi: 10.1101/2024.09.25.615021.

Abstract

The emergence and global spread of carbapenem-resistant Enterobacter cloacae complex species presents a pressing public health challenge. Carbapenem-resistant Enterobacter species cause a wide variety of infections, including septic shock fatalities in newborns and immunocompromised adults. The intestine may be a major reservoir for these resistant strains, either by facilitating contamination of fomites and transfer to susceptible individuals, or through translocation from the gut to the bloodstream. For this reason, we sought to establish a neonatal mouse model to investigate the mechanisms underpinning gut colonization by carbapenem-resistant Enterobacter hormaechei. We describe a new mouse model to study gut colonization by Enterobacter species, leading to vital insights into the adaptation of carbapenem-resistant E. hormaechei to the gut environment during the early stages of intestinal colonization. We observed successful colonization and proliferation of E. hormaechei in the five-day old infant mouse gut, with primary localization to the colon following oral inoculation. We also uncovered evidence that E. hormaechei uses mucus as a carbon source during colonization of the colon. Our findings underscore the importance of oxygen-dependent metabolic pathways, including the pyruvate dehydrogenase complex, and N-acetyl-D-glucosamine metabolism, in gut colonization and proliferation, which aligns with previous human studies. These insights are essential for developing novel therapeutic strategies that can serve as decolonization therapies in at-risk populations.

Importance: Bloodstream infections caused by Enterobacter species pose a significant clinical threat. The intestine acts as the primary site for colonization and serves as a reservoir for infection. To combat this pathogen, it is crucial to understand how carbapenem-resistant Enterobacter species colonize the gut, as such knowledge can pave the way for alternative therapeutic targets. In this study, we developed a novel neonatal mouse model for gastrointestinal colonization by Enterobacter species and discovered that mucus plays a key role as a carbon source during colonization. Additionally, we identified two mucus catabolism pathways that contribute to intestinal colonization by carbapenem-resistant E. hormaechei. This new mouse model offers valuable insights into host-pathogen interactions and helps identify critical gastrointestinal fitness factors of Enterobacter, potentially guiding the development of vaccines and alternative therapeutic strategies to minimize intestinal carriage in patient populations at risk for infection with Enterobacter species.

Keywords: Carbapenem-resistant Enterobacter species; neonatal mice; suckling mice gut colonization.

Publication types

  • Preprint