Recent odor experience selectively modulates olfactory sensitivity across the glomerular output in the mouse olfactory bulb

bioRxiv [Preprint]. 2024 Sep 23:2024.07.21.604478. doi: 10.1101/2024.07.21.604478.

Abstract

Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations. Processing within the mouse olfactory bulb is likely involved in generating adaptation, although there are conflicting models of how it transforms the glomerular output of the mouse olfactory bulb. Here we performed 2-photon Ca2+ imaging from mitral/tufted glomeruli in awake mice to determine the time course of recovery from adaptation, and whether it acts broadly or selectively across the glomerular population. Individual glomerular responses, as well as the overall population odor representation was similar across imaging sessions. However, odor-concentration pairings presented with interstimulus intervals upwards of 30-s evoked heterogeneous adaptation that was concentration-dependent. We demonstrate that this form of adaptation is unrelated to variations in respiration, and olfactory receptor neuron glomerular measurements indicate that it is unlikely to be inherited from the periphery. Our results indicate that the olfactory bulb output can reliably transmit stable odor representations, but recent odor experiences can selectively shape neural responsiveness for upwards of 30 seconds. We propose that neural circuits that allow for non-uniform adaptation across mitral/tufted glomerular could be important for making dynamic adjustments in complex odor environments.

Keywords: 2-photon; Olfactory bulb; Optical imaging; adaptation; calcium imaging; mouse.

Publication types

  • Preprint