Chemotherapeutics used in cancer therapy are often linked to muscle wasting or cachexia. Insights into the molecular basis of chemotherapy-induced cachexia is essential to improve treatment strategies. Here, we demonstrated that Sorafenib-tyrosine kinase inhibitor (TKI) class of chemotherapeutic agents-induced cachexia. System-wide analyses revealed that Sorafenib alters the global transcriptional program and proteostasis in muscle cells. Mechanistically, Sorafenib treatment reduced active epigenetic mark H3K4 methylation on distinct muscle-specific genes by impeding chromatin association of SET1A-catalytic component of the SET1/MLL histone methyltransferase complex. This mechanism favored transcriptional disorientation that led to disrupted sarcomere assembly, calcium homeostasis and mitochondrial respiration. Consequently, the contractile ability of muscle cells was severely compromised. Interestingly, the other prominent TKIs Nilotinib and Imatinib did not exert similar effects on muscle cell physiology. Collectively, we identified an unanticipated transcriptional mechanism underlying Sorafenib-induced cachexia. Our findings hold the potential to strategize therapy regimens to minimize chemotherapy-induced cachexia.
Keywords: Health sciences; Internal medicine; Medical specialty; Medicine; Oncology.
© 2024 The Author(s).