A NONPARAMETRIC MIXED-EFFECTS MIXTURE MODEL FOR PATTERNS OF CLINICAL MEASUREMENTS ASSOCIATED WITH COVID-19

Ann Appl Stat. 2024 Sep;18(3):2080-2095. doi: 10.1214/23-aoas1871. Epub 2024 Aug 5.

Abstract

Some patients with COVID-19 show changes in signs and symptoms such as temperature and oxygen saturation days before being positively tested for SARS-CoV-2, while others remain asymptomatic. It is important to identify these subgroups and to understand what biological and clinical predictors are related to these subgroups. This information will provide insights into how the immune system may respond differently to infection and can further be used to identify infected individuals. We propose a flexible nonparametric mixed-effects mixture model that identifies risk factors and classifies patients with biological changes. We model the latent probability of biological changes using a logistic regression model and trajectories in the latent groups using smoothing splines. We developed an EM algorithm to maximize the penalized likelihood for estimating all parameters and mean functions. We evaluate our methods by simulations and apply the proposed model to investigate changes in temperature in a cohort of COVID-19-infected hemodialysis patients.

Keywords: COVID-19; Coronavirus Disease 2019; EM algorithm; SARS-CoV-2; clustering; mixed-effects model; mixture model; severe acute respiratory syndrome coronavirus 2; spline.