Tetraphenylborate (BPh4 -) has been widely employed in the field of electrolytes and displayed better ionic conductivities in polymer solid-state Li+ conductors. However, the fabrication of tetraphenylborate monomers into metal-organic frameworks (MOFs) and the exploration of their potential in solid-state electrolytes have never been reported. In this work, carboxylic acid functionalized lithium tetraphenylborate was purposefully synthesized and employed to construct an anionic MOF as a solid electrolyte. The counter cation Li+ was encapsulated into the anionic channel to become the free mobile charge carrier that produced a lithium-ion solid electrolyte with outstanding ion conductivity (2.75 × 10-3 S cm-1 at 25 °C), an impressively high lithium-ion transference number (t Li+ = 0.89), and low activation energy (0.15 eV). Acting as a solid electrolyte, the anionic MOF-based lithium iron phosphate battery delivered an initial specific capacity of 135 mA h g-1 and retained 95% capacity after 220 charge-discharge cycles with a coulombic efficiency close to 100%. Moreover, by exchanging the free Li+ with Na+, K+, Mg2+, Ca2+, and Zn2+, our anionic MOF is also available for other types of solid electrolytes with the corresponding conductivities all above that of the functional battery electrolyte. Our work provided a convenient and tunable route to prepare conducting MOFs for alkali metal ions, alkaline earth metal ions, and other possible metal cations of interest, which could be used in solid-state electrolytic devices in the future.
This journal is © The Royal Society of Chemistry.