The increasing structural complexity and downscaling of modern nanodevices require continuous development of structural characterization techniques that support R&D and manufacturing processes. This work explores the capability of laboratory characterization of periodic planar nanostructures using 3D X-ray standing waves as a promising method for reconstructing atomic profiles of planar nanostructures. The non-destructive nature of this metrology technique makes it highly versatile and particularly suitable for studying various types of samples. Moreover, it eliminates the need for additional sample preparation before use and can achieve sub-nanometre reconstruction resolution using widely available laboratory setups, as demonstrated on a diffractometer equipped with a microfocus X-ray tube with a copper anode.
Keywords: X-ray standing waves; grazing-incidence X-ray fluorescence; laboratory metrology; many-beam dynamical diffraction theory.
© Ksenia Matveevskii et al. 2024.